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In regard to a two-dimensional subsonic laminar boundary layer the customary view is 
that its stability against plane waves (Tollmien-Schlichting waves), propagating in the same 
direction as the mean-velocity vector (direct waves), must be investigated Lm].r~ This 
follows from the Squire theorem, which states that in a study of the transient instability of 
a plane-parallel flow the problem for a wave propagating at an angle to the direction of the 
principal velocity (oblique wave) reduces to a two-dimensional problem with a lower Reynolds 

m,_. u~t~Llzlln~u n~]]ber. ~nzs suggests that the instability Reynolds n-~n]ber is .......... directly from two- 
dimensional analysis [2, 3]. For practical applications, however, it is very important to 
know the increments of the waves. In particular, semi-empirical methods of calculating the 
transition -- ~ Ln~ --~" ~--~-- un~tau• Reyno• n-~n]ber, based on .... determination of the amp•177177 of the ....... 
waves, are used extensively [4 =~ , J J ,  

As a rule, in the theory of 'nyurouyn~u• ............ ~•177177177 ~ ~ ~ -- and transition in the boundary 
layer the Squire theorem is interpreted much more broadly: Reynolds n~n~ber is taken to mean 

i,~,;uel. the transition Reynolds ........ It is also ass~nied that for a fixed Reynolds n~]iber the local 
~ l ~ • 1 7 7  ~ ...... 1 increment of the oblique wave is ........ than that of the direct wave for the sm~e ~yuu• 

n~ber, but this does not follow from .... un~ theorem. 

Moreover, the statement of the theorem concerning the instability Reynolds number is 
not always valid, even for a two-dimensional •177 . . . . . . . . . . . . . .  laminar boundary layer on the 

t[ans• useu pxane-para•177 conditions, since the ................ by Squire is strictly assumption of ......... 
valid only when the characteristics of the average flow are invariant under this transformation 
(self-similar boundary layers) and when the wave numbers of the disturbances are real (tran- 
sient instability) or the ratio of the complex component of the wave number of the oblique 
wave in the direction of the velocity of the mean flow and the complex wave n~uu~ of the 
equivalent direct wave is real (the Re~oids nu~ber of the equivalent wave should be ..... 

t~teu~em boundary ~ ..... and This ..... "-~ • app•177177 ~uu~tant~a•177 limits the ......... of the Squire ......... to 
t~ur~m virtually makes it .......... in the . . . . . . . . . . . . . . . . .  was v~ue• pruu• of determining the transition. • 

previously shown to be inapplicable to compressible boundary layers [2]. 

Our aim here is to ~nuw ..... that the assertion that uu• ........ waves are "less uanMeruu~" for 
the transition to the turbulent regime is wrong even for a two-dimensional incompressible 
isothermal boundary layer in the plane-parallel approximation. In other words, it is asserted 

l l ~ l l U ~  ~ ,  that oblique waves can have lower instability Reynolds .......... larger increments, and in the 
end, lower transition Reynolds ~,ue~s, than do direct waves. 

r~ob• consider a two-dimensional subsonic laminar boundary Formulation of the . . . . . . .  ' We 
layer of an incompressible liquid on an isothermal surface. As the mathematical model we 
take the Navier-Stokes equations and the continuity equation. We investigate the stability of 
this boundary layer against disturbances of small amplitude. The main flow in the approxima- 

. . . . . . . .  ~ ..................... y: of the longitudi- tion of a p•177177177 uou**ua~F layer is uharauuec• by profile U(x, --~ 
nal component of the velocity vector. The transverse component of the velocity vector is 
assumed to be zero and the thickness of the boundary layer, constant [I, 2]. The initial 
equations must be linearized in the mean flow in order to study the instability. The solu- 
tion of the linearized system of equations is sought in the form of two plane waves: 

( u ' ,  v ' ,  w ' ,  p ' )  ---- ( / ,  % h ,  n )  e x p  [i(czx -5  [~z - -  (~t)1. 

Here p', u', v', and w' are the disturbances of the pressure and the components of the velocity 
_ _ ~  ...... t_ vector; ~, f, ~, and h are their amplitudes; ~ anu$ are the wave nmuuers in the x and z 

directions; w is the angular frequency; and t is the time. 

Reutov. Translated from Prikladnaya Mekhanika i T~kmL• Figika, No. 3, pp. ~J-J0, 
May-June, 1992. Original article submitted April 23, 1991. 

350 0021-8944/92/3303-0350512.50 �9 1992 Plenum Publishing Corporation 



F. /O ~ 

8 -  

4 -  

5- 
0 

5- 

0 

J -  

0 
o,s 

a 

\ 

/ / , , ~  

45 z,~ ~.~o -s 

Fig. 1 Fig. 2 

Substituting these expressions into the linearized equations, we obtain [2] 

[ f ' - -  ~1] ,  ~(=U --  m) ~ = 

[ r  ~ (=u-~o) h = - - ~ +  ~ [h"--~h] ,  z(=]+~h)+ r  

(1) 

The ~- - =-'- uou~u~ry conditions are 

I = O ,  ~ = 0 ,  h = O  ( y = O ) ,  
]--~ O, (p---)-O, h - + O  (y-+ oo) 

[R = (Uex/~) is the modified Reynolds nmi~ber, calculated from the velocity at the outer 
boundary of the layer, and ~2 = ~2 + 62]. 

Studying the stability thus comes down to finding the eigenvalues of the boundary- 
(~ 

value problem (I), ~=), i.e., the complex values of ~ and S as functions of the parc~ieters 
R and w (or the dimensionless frequency parmTzeter F = ~/Ue2). The boundary-value problem 
(I), (2) was solved n~Tzerically on a computer by an improved orthogonalized method [6, 7]. 

Results of Calculations. All the calculations were performed for an isothermal[ boun- 
dary layer on a flat plate. In Fig. 1 we show the neutral stability curves, constructed 
for direct and oblique waves. Here and below solid lines correspond to oblique waw~s and 
the dashed lines, to direct lines. The right branches of the curves for the two waves coin- 
cide. We see that in the region of rather low frequencies (F S 104 ) the minimum values of 
the instability Reynolds n~bers for oblique waves of a fixed frequency become smaller than 
for the direct wave and the range of the unstable frequencies expands. This is particularly 
clear from the dependences of the local growth coefficients of the disturbances a i (the 
imaginary parts of the wave nmn~ber g, for a plane wave ~i = ai) on R, which are shown in 
Fig. 2, calculated for four values of the frequency parameter R: a) F'• = 3, b) 2," c) 
0.85, d) 0.25. It is interesting to note that for the first three frequencies the maximaL1 
local increment for an oblique wave coincides with the maximum for the direct wave, while 
it is larger for the fourth. ~' "-~nz~ is because the maxim~a •177 .... increment for direct waves 
begins to decrease from a certain frequency as the frequency decreases further, and as a 
result the curves of the constant local increment for direct waves are closed. 

The angle X = arctan (S/s) between the mean-velocity vector and the direction of pro- 
pagation of the wave is plotted against R in Fig. 3; X is the angle at which the amplifica- 
tion of the wave is maximuxa. We see that near the left branch of the neutral curve this 
angle reaches its maximmm value and then falls to zero at some value of R. It is smaller 
than the R at which the maxim~ value of ~i is reached for two values of the frequency 
parmn~eter, is approximately equal to this value for the third and higher for the fourth. 
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For the frequency parameters F < 0.85 1~-5 w•177177 ~ -xu the wave with maxim~r, mn~plification ..... be uuxlque ...... 
_ _ _ I  �9 J - -  �9 -~ m l - _  on a segment greater than the region where the local amp• increment grows. ~,e 

angle of inclination has its largest value at the beginning of this region, increases with 
decreasing F, and approaches 90 ~ in the limit F + 0. 

1 . . . . . . . .  - 1  . . . . .  L I I ~  _ . 1 �9 ] - -  _ J _ . _  Ill Fig. 4 we snow the dupenue.uus of ~'-- local amp• coefficients on the angle 
of inclination X of the wave, calculated for a fixed value F = ~'~u ~ ~-s and R "~• ~ = 1.3, • = 

1.7, and 2 (lines ' ~  . . . . . . . . . .  l-4j. From the graphs we can trace the evolution of these uependunue~ as 

the oblique wave moves from the left uranun of the nuutLax-~Labi• curve to the L xgut 

branch. We see, for example, that while for the first value of R, which is near the left 

brant,, ~i is maximum for the oblique wave (X ==o~ ~ ), for the second value of R it is 

approximately constant over a wide range~0 i • _ < 45~ With further motion to the right branch 

the maximm-a shifts to the zero value of ~i and becomes more and more acute; this is consistent 
( 1 - - - 1  . . . . .  ~ L 1  �9 _ 1 _  _ . 1  konxy ill this range of vaxues of R) with the ~bLauxlm~tuu ideas: the local increment is 

larger for the direct wave than for the oblique wave. 

r . . . . . .  ; - - 1 L l l ~  • p ~ a c t - c a •  a p p l i c a t i o n s ,  a s  a r u l e ,  t h e  i n t e r e s t  i s  n o t  i n  . . . .  l o c a l  i n c r e m e n t s  b u t  i n  

their integral characteristics, which relate the disturbance amplitude A with its initial 

value A0 by 

J (x)  = - -  oq d x  = In  ( A / A o ) .  
. cos Z 
xs 

. . . .  1_ n~uts Here Xl is the value of the coordinate x corresponding to the left branu, of the ....... 

stability curve. For a flat plate 

R 

2f ( e 111'  = - -  c-;-~z d B ' R I  = ~--V-- /  " 

R 1 

The integrated increments must also be known in order to determine the point of transi- 

tion to the turbulent flow regime by the e N method [4, 5], according to which a transition 
s - I_,~I . . . .  J~- -- occurs when J(x~) [or J(R2), where R 2 = kUeX21v~ /2 is the value of R corr~spulmxng to the 

neutrax-~tauixlty ] reaches a certain __i.._ N. For " .~I ___i_,, r i g h t  b r a n c h  o f  t h e  - -  - ~ . . . .  ""  c u r v e  v a x u e  f u x x - ~ c a ~ u  
c o n d i t i o n s  t h e  v a l u e  N = 9 i s  u s u a x x y  . . . . . . . . . . . .  L e a c n e u .  A c c o r d i n g  t o  s o m e  d a t a  N r e a c h e s  I I .  U n d e r  

t h e  c o n d i t i o n s  o f  w i n d  t u n n e l  t e s t s  ~" m a y  b e  ~ u u ~ t a n t x a x •  . . . . . . . . . . . . . . . . . . .  [O~oj. 

The results of calculations of the integrated increments for four values of the fre- 
quency parmmeter are given in Fig. 5. We see that the values of J calculated for oblique 
waves can be much higher than the corresponding values for a direct wave; the differences 

dlmun~lunxu~s frequency parameter F is ~malxuL. ~-- ratio become more pronounced when the �9 - -'- " . . . . .  ~-" ~ue 
of the maxim~ values of J for direct and oblique waves at F = 3-I0 -s, 2"• 0 0=.I0-5 . O J  

. ~ 1 - - S  O E  n -- & _ -  1 ~ 1  1 _  and 0.~J'• is 1.18, l.~J, 1.8, and 2.o (a-d). ~nd aiLnougn in the first case this 
difference is not very large, we note that according to the e N method the oblique wave leads 
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to turbulence (N = 9) while this does not happen for the direct wave. In other words, oblique 

waves can be tile cause of ~'-Lne transition to turuu.uncu. 

In Fig. 6 the maxim~-J~ value Jmax from the entire range of mlstable frequencies is 

p• as a function of R for direct and ou.iquu ........ waves�9 ~.~ excess of Oma x ~ for the oblique 

wave over its value for ~'--uue direct wave ueuo,,~u~ larger anu larger as R increases. It also 

follows from Fig. 6 that oblique waves have a lower critical ~ey.o.us ........ number ~ ~cr and cause 

a transition to turbulence at a point lying ....... n• along the • For example, at N = 9 it is 

~.6"lu ~ as against " = 1 88"I~ ......... .76- ~cr ~- ~ - ~ • for the direct wave wn• at = it is = 1 ~cr Rcr 
i~ __ ~ 2.09.1~ �9 u a~ against =cr = .u This corresponds to the transition region being shortened by 

a factor of I�9 in the first case and ..~• ~ '~ in the second. 

As for . . . . . . . . . . . . . . . .  know of only one exp~z-mu**ud• investigations of uu.ique u-~tuL=-" . . . . .  ~uaL,u~,  we recent 

publication reporting on the first experimental study of artificially introduced co:F~trolled 

zsut.eLma. A special tech- Tu•177 waves on a flat " - ' ..... ~ plate in a wind tunnel LOJ. 

nique was developed to generate such disturbances. A wave with dimensionless frequency 
parameter F = ~-4 ._ = .... = �9 u in tile range of ...... 0 < < ~o ang.~s _ X _ ~ was iutrouuu~u into the boundary layer. 
ml__ ]3 ~. I- . . . . . . .  1_ , t 2 _ 
• u.Suuruanu~S ~xniuxt~d unusual behavior: the amplitude of the excited wave decreases as 
the -- ~ . . . .  i. ._ ..... =~._ .~_ __ u• uanues was ai,g.~ of propagation • but amp.ifiuatzun of the recorded in the 

range of frequencies substantially smaller than the excited frequency. To explain this 

phenomenon Robey [8] suggests that a different, nonlinear mechanism a~plifies oblique waves 
a . _ ~  ~ 1  J . 1 -  �9 LII~ L., ~.u that un• mec~,anzsm is based on the fact ..... as he uemu.stcat~, the oblique wave 

differs qualitatively from the direct wave in that its vortex field has a t.~-uzm~,~• 
structure. 

Ill m l _ _  1 " - - 1 _  - .  ~ _ _ l ~ - -  unu - z g u t  o f  o u r  ~ e ~ u - ~ = ,  a m - ~ p l i f i c a t i o n  o f  o b l i q u e  w a v e s  c a n  be  e x p l a i n e d  e v e n  w i t h -  
in tile framework of the linear theory of hydrodynamic stability: the growing three-dimen- 

~-u,~a• disturbances detected in the experiment are uu• •177 waves, which 

are unstable from the standpoint of the linear theory, while the excited wave is in the range 

of frequencies at which the direct wave is more stable than is the oblique wave. 

In summary, we ]lave demonstrated that oblique waves play a much greater role in the pro- 

cesses of the transition to turbulent flow than has been generally accepted�9 They can have 

lower instability Reynolds numbers and larger increments and can be the cause of turbulence. 

It is important to point out that this can occur not only because the critical transition 
Reynolds n-m-r~ber can be . . . . . . . . . . . . . . .  ~uu~a.~za.ly lower for uu• waves but also because they have a 
tnruu-u~.uun~iona, structure even in the .• ~ -" -- theory. 

We thank V. Ya. L~vul,e**~u for useful uzsuu~s• ............ as well as for drawing our attention 
to the paper by Robey [8]. 
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